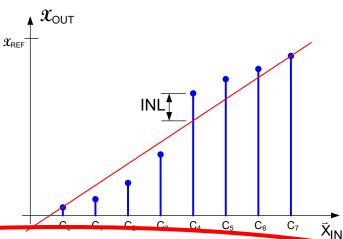
EE 435

Lecture 37


Data Converters

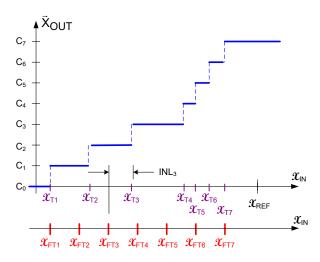
Statistical Characterization

Statistical Analysis of Data Converters

Integral Nonlinearity (DAC)

Nonideal DAC

- At design stage INL characterized by standard deviation of the random variable
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
 - Model parameters become random variables
 - Process parameters affect multiple model parameters causing model parameter correlation
 - Simulation times can become very large
- INL can be readily measured in laboratory but often dominates test costs because of number of measurements needed when n is large
- Expected value of INL_k at k=(N-1)/2 is largest for many architectures
- Major effort in DAC design is in obtaining acceptable INL yield!


Integral Nonlinearity (ADC)

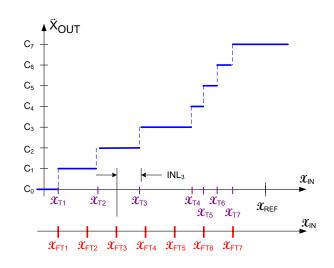
Nonideal ADC

Break-point INL definition

$$INL_{k} = \frac{\mathcal{X}_{Tk} - \mathcal{X}_{FTk}}{\mathcal{X}_{LSB}}$$
 $1 \le k \le N-2$

$$INL = \max_{2 \le k \le N-2} \left\{ |INL_k| \right\}$$

- Component dimensions and model parameters of all devices in a data converter are actually random variables at the design stage!
- At design stage (INL characterized by standard deviation of many random variables)
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
 - -Model parameters become random variables
 - -Process parameters affect multiple model parameters causing model parameter correlation
 - -Simulation times can become very large


Integral Nonlinearity (ADC)

Nonideal ADC

Break-point INL definition

$$INL_k = \frac{\mathcal{X}_{Tk} - \mathcal{X}_{FTk}}{\mathcal{X}_{LSB}}$$
 $1 \le k \le N-2$

$$INL = \max_{2 \le k \le N-2} \left\{ |INL_k| \right\}$$

- INL can be readily measured in laboratory but often dominates test costs because of number of measurements needed when n is large
- Expected value of INL_k at k=(N-1)/2 is largest for many architectures
- INL of $\frac{\mathcal{X}_{LSB}}{2}$ often considered acceptable (this is the ideal value of the continuous-input INL

definition though many high-speed ADCs and some lower-speed structures will have an INL that exceeds this)

- Major effort in ADC design is in obtaining an INL acceptable yield!
- Yield often strongly dependent upon matching of random variables!

Characteristics of Data Converters Dominantly Depend Upon Random Variables

- Static characteristics
 - Resolution
 - Least Significant Bit (LSB)
 - Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
 - Integral Nonlinearity (INL)
 - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Quantization Noise
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

Characteristics of Data Converters Dominantly Depend Upon Random Variables

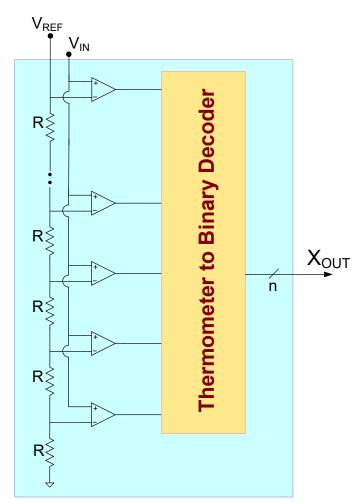
- Dynamic characteristics
 - Conversion Time or Conversion Rate (ADC)
 - Settling time or Clock Rate (DAC)
 - Sampling Time Uncertainty (aperture uncertainty or aperture jitter)
 - Dynamic Range
 - Spurious Free Dynamic Range (SFDR)
 - Total Harmonic Distortion (THD)
 - Signal to Noise Ratio (SNR)
 - Signal to Noise and Distortion Ratio (SNDR)
 - Sparkle Characteristics
 - Effective Number of Bits (ENOB)

Methods of Characterizing how Random Variables Affect Performance

- Analytical Statistical Formulation and Analysis
- MATLAB Simulations (often using Monte-Carlo Analysis)
- Spectre/Spice Monte-Carlo Simulations
- Ignore Effects of Random Effects

How important is statistical characterization of data converters?

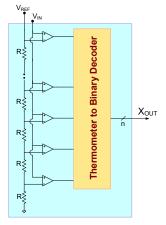
Example: 7-bit FLASH ADC with R-string DAC


Assume R-string is ideal, V_{REF} =1V and V_{OS} for each comparator must be at most +/- $\frac{1}{2}$ LSB

Why this assumption?

Note: this is a much different performance requirement than requiring that INL< ½ LSB and would not be part of a standard specification but we will see that it is analytical tractable and gives an appreciation for the importance of statistical analysis

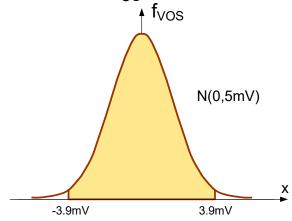
Case 1


Determine the yield if V_{OS} has a Gaussian distribution (Normal) with zero mean and a standard deviation of 5mV

Example: 7-bit FLASH ADC with R-string DAC

Assume R-string is ideal, V_{REF} =1V and V_{OS} for each comparator must be at most +/- $\frac{1}{2}$ LSB

Case 1

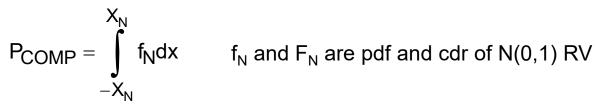


Determine the yield if V_{OS} has a Gaussian distribution (Normal) with zero mean and a standard deviation of 5mV

$$\frac{1}{2}$$
 LSB = $\frac{1V}{(2^{(7+1)})} = 3.9 \text{mV}$

The probability that a single comparator meets the V_{OS} requirement is given by

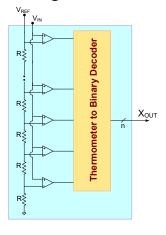
$$P_{COMP} = \int_{-3.9mV}^{3.9mV} f_{VOS} dV$$

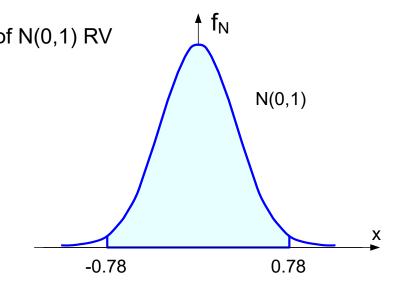


Example: 7-bit FLASH ADC with R-string DAC Assume V_{OS} is zero-mean gaussian

Case 1
$$\sigma_{VOS}$$
=5mV

$$P_{COMP} = \int_{-3.9mV}^{3.9mV} f_{VOS} dV$$

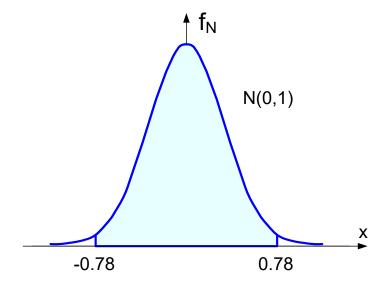

Define $X_N = V_{OS}/\sigma$ Since $\mu = 0$, this will make $X_N : N(0,1)$

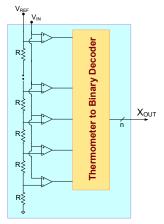


 $X_N = 3.9 \text{mV} / 5 \text{mV} = 0.78$

$$P_{COMP} = \int_{-0.78}^{0.78} f_N dx$$

$$P_{COMP} = 2 \bullet F_{N}(0.78) - 1$$




Table of CDF for N(0,1) Random Variables

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1		0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2		0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3		0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4		0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.0103	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	$0.9^{2}0097$	$0.9^{2}0358$	$0.9^{2}0613$	$0.9^{2}0863$	0.9 ² 1106	$0.9^{2}1344$	0.9^21576
2.4		$0.9^{2}2024$	$0.9^{2}2240$	0.9 ² 2451	$0.9^{2}2656$	$0.9^{2}2857$	$0.9^{2}3053$	$0.9^{2}3244$	$0.9^{2}3431$	$0.9^{2}3613$
2.5		$0.9^{2}3963$	0.9 ² 4132	$0.9^{2}4297$	$0.9^{2}4457$	0.9 ² 4614	0.9^24766	0.9 ² 4915	0.9^25060	0.925201
2.6		$0.9^{2}5473$	0.9^25604	0.9 ² 5731	0.9^25855	0.9^25975	$0.9^{2}6093$	$0.9^{2}6207$	0.9 ° 6319	$0.9^{2}6427$
2.7		$0.9^{2}6636$	$0.9^{2}6736$	$0.9^{2}6833$	$0.9^{2}6928$	$0.9^{2}7020$	0.9 ² 7110	0.927197	$0.9^{2}7282$	$0.9^{2}7365$
2.8	0.927445	$0.9^{2}7523$	0.9^27599	0.9^27673	0.9^27744	0.9 ² 7814	0.9^27882	$0.9^{2}7948$	$0.9^{2}8012$	0.9^28074
2.9		0.9 ² 8193	$0.9^{2}8250$	0.9^28305	$0.9^{2}8359$	0.9 ² 8411	0.9^28462	0.9 ² 8511	0.9^28559	0.9^28605
3.0		$0.9^{2}8694$	$0.9^{2}8736$	0.9 ² 8777	0.9 ² 8817	$0.9^{2}8856$	0.9^28893	$0.9^{2}8930$	$0.9^{2}8965$	0.9^28999

Example: 7-bit FLASH ADC with R-string DAC

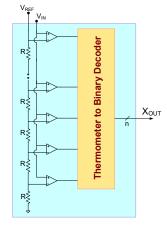
$$P_{COMP} = 2 \cdot F_{N}(0.78) - 1 = 2 \cdot .7823 - 1 = 0.565$$

Each comparator has 56.5% yield

Example: 7-bit FLASH ADC with R-string DAC

Case 1 σ_{VOS} =5mV

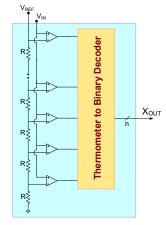
$$P_{COMP} = 0.565$$


Since all comparators must be good, the ADC yield is

$$Y_{ADC} = (P_{COMP})^{127} = (0.565)^{127}$$

$$Y_{ADC} = 3.2 \cdot 10^{-32}$$

The effects of statistical variation can have dramatic effects on yield of data converters!

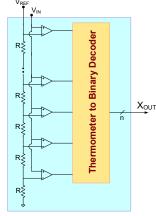


Example: 7-bit FLASH ADC with R-string DAC

Case 1
$$\sigma_{VOS}$$
=5mV

Since all comparators must be good, the ADC yield is

$$Y_{ADC} = 3.2 \cdot 10^{-32}$$

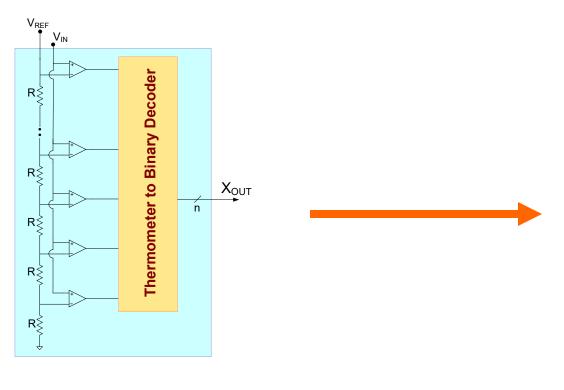


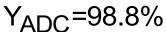
Note: The specification in this example that requires no comparator has an offset voltage of larger than 0.5LSB may not be a good performance specification as the FLASH ADC may actually perform reasonably well even if some comparators have an offset that is larger than 0.5LSB. A more useful requirement might be that there be no bubbles in the thermometer code output. Certainly if all comparators have an offset that is at most 0.5LSB, there will be no bubbles in the output code attributable to comparator offset but a modestly weaker constraint can also guarantee there are no bubbles. With the 0.5LSB assumption, a specification that was dependent upon 127 uncorrelated random variables was obtained which made the analysis quite easy. A "no bubble" specification could be approximated by stating that the maximum of the 127 V_{OSk}-V_{OSk-1} must be less than V_{LSB}. This becomes an order statistic of 127 Gaussian random variables which is analytically intractable.

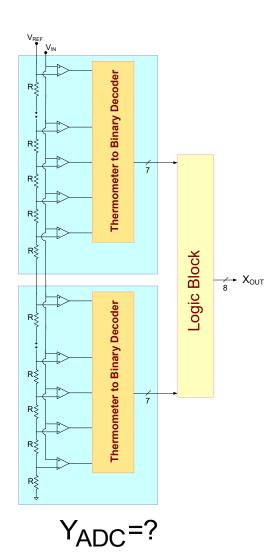
Example: 7-bit FLASH ADC with R-string DAC

Case 2 Repeat the previous example if σ_{VOS} =1mV

Assume R-string is ideal, V_{REF} =1V and V_{OS} for each comparator must be at most +/- $\frac{1}{2}$ LSB


$$P_{COMP} = \int_{-3.9mV}^{3.9mV} f_{VOS}dV \longrightarrow X_{N} = 3.9mV/1mV = 3.9$$


$$P_{COMP} = \int_{-3.9}^{3.9} f_{N}dx \qquad P_{COMP} = 2 \cdot F_{N}(3.9) - 1 = 2 \cdot 0.9999952 - 1 = 0.999904$$


$$Y_{ADC} = (P_{COMP})^{127} = (0.9999904)^{127}$$

This modest change in the offset voltage has increased the yield to 98.8%

Example: What will be the yield if two of the 7-bit FLASH ADCs with yields of 98.8% are combined to obtain an 8-bit ADC?

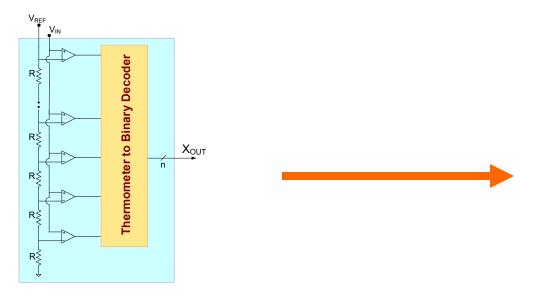
Example: What will be the yield if two of the 7-bit FLASH ADCs with yields of 98.8% are combined to obtain an 8-bit ADC?

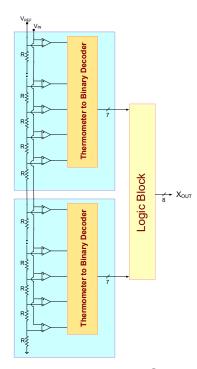
Since one additional bit has been added, V_{LSB} will decrease From 7.8mV to 3.9mV. Thus ½ LSB will be reduced to 1.95mV

$$P_{COMP} = \int_{-1.95mV}^{1.95mV} f_{VOS} dV$$

With the same σ_{VOS} =1mV,

$$X_N = 1.95 \text{ mV} / 1 \text{ mV} = 1.95$$


$$P_{COMP} = \int_{-1.95}^{1.95} f_{N} dx \qquad P_{COMP} = 2 \bullet F_{N} (1.95) - 1 = 2 \bullet 0.97441 - 1 = 0.9488$$


$$Y_{ADC} = (P_{COMP})^{255} = (0.9488)^{255}$$

$$Y_{ADC} = 1.52 \bullet 10^{-6}$$

This seemingly simple extension of a circuit with a very high yield has essentially no yield!

Example: What will be the yield if two of the 7-bit FLASH ADCs with yields of 98.8% are combined to obtain an 8-bit ADC?

- $Y_{ADC} = 1.52 \cdot 10^{-6}$
- The onset of statistically-induced yield loss can be abrupt
- Intuition is not an acceptable substitute to statistical analysis
- Without statistical analysis/simulation there is a high probability that a data converter will be substantially over designed or under designed and neither is acceptable

Statistical Modeling of Random Variations

For the effects of local random variations of a parameter X, generally

$$\sigma_{X} \propto \frac{A_0}{\sqrt{A_C}}$$

where A_C is the area of the matching critical components and A₀ is a process parameter

Importance of statistical analysis – example

What changes in area would be needed to decrease σ_{VOS} from 5mV to 1mV?

$$\sigma_{X} \propto \frac{A_0}{\sqrt{A_C}}$$

$$\sigma_{X_{5}} = \theta \frac{A_{0}}{\sqrt{A_{C_{5}}}}$$

$$\sigma_{X_{1}} = \theta \frac{A_{0}}{\sqrt{A_{C_{1}}}}$$

$$\sigma_{X_{1}} = \frac{\sqrt{A_{C_{1}}}}{\sqrt{A_{C_{5}}}} = 5$$

$$A_{C_1} = 25A_{C_5}$$

Equivalent Number of Bits (ENOB)

- Often the performance of an n-bit commercial data converter is not commensurate with that of an ideal n-bit data converter but more like that of an n-k bit data converter
- The equivalent number of bits (ENOB) is often used to characterize the actual level of performance
- Different ENOB definitions depending upon which characterization parameter is of interest (e.g. INL, SFDR, SNR, ...)

INL-based ENOB

(Review from previous lecture)

Consider initially the continuous INL definition for an ADC where the INL of an ideal ADC is $X_{LSB}/2$

Assume INL=
$$vX_{LSBR} = v\frac{X_{REF}}{2^{n_R}}$$

where X_{LSBR} is the LSB based upon the defined resolution , n_{R}

Define the equivalent LSB by
$$X_{LSBE} = \frac{X_{REF}}{2^{n_{EQ}}}$$

Thus (substituting for X_{REF} into INL expression):

INL=
$$v \frac{2^{n_{EQ}}}{2^{n_{R}}} X_{LSBE} = \left[v 2^{n_{EQ}+1-n_{R}}\right] \frac{X_{LSBE}}{2}$$

Since an ideal ADC has an INL of $X_{LSB}/2$, Setting term in [] to 1, can solve for n_{EQ} to obtain

ENOB =
$$n_{EQ} = log_2 \left(\frac{1}{2\theta}\right) = n_R - 1 - log_2(\upsilon)$$

where n_R is the defined resolution

(Review from previous lecture)

INL-based ENOB

ENOB = n_R -1- $log_2(v)$

Consider an ADC with specified resolution of n_R and INL of v LSB

V	ENOB
1/2	n _R
1	n _R -1
2	n _R -2
4	n _R -3
8	n _R -4
16	n _R -5

Though based upon the continuous-INL definition, often used to define ENOB from INL viewpoint

16-Bit, 200 MSPS/250 MSPS Analog-to-Digital Converter

Data Sheet \$120 in 1000's AD9467

FEATURES

75.5 dBFS SNR to 210 MHz at 250 MSPS
90 dBFS SFDR to 300 MHz at 250 MSPS
SFDR at 170 MHz at 250 MSPS
92 dBFS at -1 dBFS
100 dBFS at -2 dBFS
60 fs rms jitter
Excellent linearity at 250 MSPS

 $DNL = \pm 0.5 LSB typical$

INL = ±3.5 LSB typical

2V p-p to 2.5 V p-p (default) differential full-scale

input (programmable)

Integrated input buffer

External reference support option

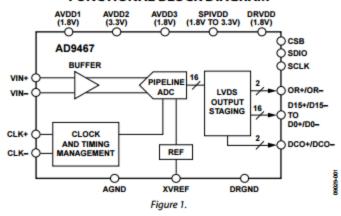
Clock duty cycle stabilizer

Output clock available

Serial port control

Built-in selectable digital test pattern generation

Selectable output data format


LVDS outputs (ANSI-644 compatible)

1.8 V and 3.3 V supply operation

APPLICATIONS

Multicarrier, multimode cellular receivers
Antenna array positioning
Power amplifier linearization
Broadband wireless
Radar
Infrared imaging
Communications instrumentation

FUNCTIONAL BLOCK DIAGRAM

ENOB = n_R -1- $\log_2(v)$ = $16-1-1.85 \cong 13.15$

Is this close to 16-bit performance?

A data clock output (DCO) for capturing data on the output is provided for signaling a new output bit.

The internal power-down feature supported via the SPI typically consumes less than 5 mW when disabled.

Optional features allow users to implement various selectable operating conditions, including input range, data format select, and output data test patterns.

The AD9467 is available in a Pb-free, 72-lead, LFCSP specified over the -40°C to +85°C industrial temperature range.

Can we depend on this "13-bit" INL performance?

SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Table 1.

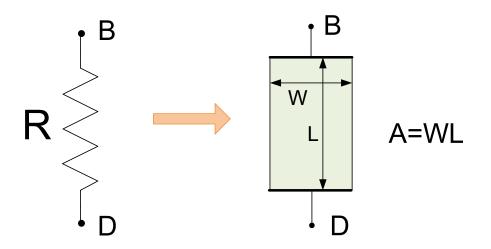
Parameter ¹	Temp	Min	Тур	Max	Unit
RESOLUTION		16			Bits
ACCURACY					
No Missing Codes	Full		Guarantee	d	
Offset Error	Full	-200	0	+200	LSB
Gain Error	Full	-3.9	-0.1	+2.6	%FSR
Differential Nonlinearity (DNL) ²	Full	-0.9	±0.5	+15	LSB
Integral Nonlinearity (INL) ²	Full (-12	±3.5	+12	LSB
TEMPERATURE DRIFT					
Offset Error	Full		±0.023		%FSR/°C
Gain Error	Full		±0.036		%FSR/°C
ANALOG INPUTS					
Differential Input Voltage Range (Internal VREF = 1 V to 1.25 V)	Full	2	2.5	2.5	V p-p
Common-Mode Voltage	25°C		2.15		V
Differential Input Resistance	25°C		530		Ω
Differential Input Capacitance	25°C		3.5		pF
Full Power Bandwidth	25°C		900		MHz
XVREF INPUT					
Input Voltage	Full	1		1.25	V
Input Capacitance	Full		3		pF
POWER SUPPLY					
AVDD1	Full	1.75	1.8	1.85	V
AVDD2	Full	3.0	3.3	3.6	V
AVDD3	Full	1.7	1.8	1.9	V
DRVDD	Full	1.7	1.8	1.9	V
I _{AVDD1}	Full		567	620	mA
I _{AVDD2}	Full		55	61	mA
I _{AVDD3}	Full		31	35	mA
I _{DRVDD}	Full		40	43	mA
Total Power Dissipation (Including Output Drivers)	Full		1.33	1.5	W
Power-Down Dissipation	Full		4.4	90	mW

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.

ENOB =
$$n_R$$
-1- $\log_2(v)$ = $16-1-3.58 \cong 11.42$

From INL viewpoint, performance of marketed parts could be about 4.5 bits less than physical resolution but does have other attractive properties

² Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

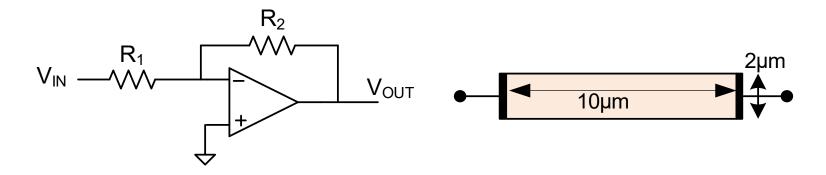

AC SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Table 2.

Parameter ¹	Tower	Males	Turn	May	Haris
	Temp	Min	-71	Max	Unit
ANALOG INPUT FULL SCALE		2.5	2/2.5		V p-
SIGNAL-TO-NOISE RATIO (SNR)	0.505				105
f _N = 5 MHz	25°C		74.7/76.4		dBF:
f _N = 97 MHz	25°C		74.5/76.1		dBF:
$f_N = 140 \text{ MHz}$	25°C		74.4/76.0		dBF:
$f_N = 170 \text{ MHz}$	25°C	73.7	74.3/75.8		dBF:
	Full	71.5			dBF:
f _N = 210 MHz	25°C		74.0/75.5		dBF:
f _N = 300 MHz	25°C		73.3/74.6		dBF:
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)					
$f_N = 5 \text{ MHz}$	25°C		74.6/76.3		dBF:
$f_N = 97 \text{ MHz}$	25°C		74.4/76.0		dBF:
$f_N = 140 \text{ MHz}$	25°C		74.4/76.0		dBFS
$f_N = 170 \text{ MHz}$	25°C	72.4	74.2/75.8		dBF:
	Full	71.0			dBF:
$f_N = 210 \text{ MHz}$	25°C		73.9/75.4		dBF:
$f_N = 300 \text{ MHz}$	25°C		73.1/74.4		dBF:
EFFECTIVE NUMBER OF BITS (ENOB)					
$f_{N}=5 \text{ MHz}$ • Can be defined different ways	25°C		12.1/12.4		Bits
• · · · · · · · · · · · · · · · · · · ·	25°C		12.1/12.3		Bits
f _N =140 MHz f _N =170 MHz • Only given as typical	25°C		12.1/12.3		Bits
f _N =170 MHz Offiny giverias typical	25°C		12.0/12.3		Bits
• Only specified at 25C	Full	11.5			Bits
The state of the s	25°C		12.0/12.2		Bits
$f_N = 300 \text{ MHz}$	25°C		11.9/12.1		Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR) (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
f _{IN} = 5 MHz	25°C		98/97		dBFS
$f_N = 97 \text{MHz}$	25°C		95/93		dBF5
$f_N = 140 \text{ MHz}$	25°C		94/95		dBF:
$f_N = 170 \text{ MHz}$	25°C	82	93/92		dBFS
	Full	82			dBF:
$f_N = 210 \text{ MHz}$	25°C		93/92		dBF:
f _N = 300 MHz	25°C		93/90		dBF5
SFDR (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
f _N = 5 MHz at -2 dB Full Scale	25°C		100/100		dBFS
f _N = 97 MHz at -2 dB Full Scale	25°C		97/97		dBF:
f _{IN} = 140 MHz at-2 dB Full Scale			100/95		dBF5
f _{IN} = 170 MHz at -2 dB Full Scale			100/100		dBF:
f _N = 210 MHz at -2 dB Full Scale	25°C		93/93		dBF5
f _{IN} = 300 MHz at -2 dB Full Scale			90/90		dBF5
WORST OTHER (EXCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
f _{IN} = 5 MHz			98/97		dBF:
f _N = 97 MHz			97/93		dBF:
f _N = 140 MHz	25°C		97/95		dBF5
$f_N = 170 \text{ MHz}$	25°C	88	97/93		dBF5
	Full	82			dBF5
$f_N = 210 \text{ MHz}$	25°C		97/95		dBF5
f _N = 300 MHz	25°C	1	97/95		dBF

Statistical Characterization of Resistors

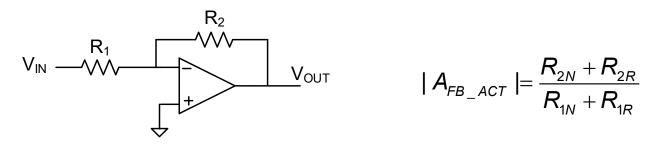


$$\sigma_{\frac{R}{R_N}} = \frac{A_R}{\sqrt{WL}} = \frac{A_R}{\sqrt{A}}$$

A_R is a process parameter

Note the normalized variance is independent of the resistor value!

Example: Determine the yield of the basic inverting amplifier if the gain must be accurate to 1% of its nominal value of A_{FB} =-1. Assume ideal op amp and resistors, as shown, have a Gaussian distribution with A_R =0.02µm and R_{\Box} = 1K Ω

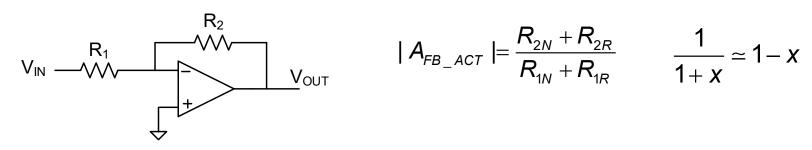


$$A_{FB} = -\frac{R_2}{R_1}$$
 Ideally $R_1 = R_2 = (L/W)xR_{\Box} \Omega/_{\Box}$ so $A_{FB} = -1$

$$A_{FB_ACT} = \frac{R_{2N} + R_{2R}}{R_{1N} + R_{1R}}$$
 where the subscripts denote the nominal and random parts of R

Note the actual gain is a random variable with a rather complicated distribution

Example: Determine the yield of the basic inverting amplifier if the gain must be accurate to 1% of its nominal value of A_{FB} =-1. Assume ideal op amp and resistors, as shown, have a Gaussian distribution with A_R =0.02 μ m and R_{\Box} = 1K Ω

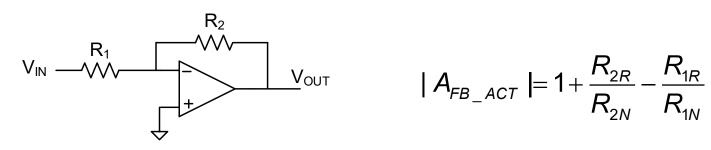

Linearize the gain:

$$|A_{FB_ACT}| = \frac{R_{2N} \left(1 + \frac{R_{2R}}{R_{2N}}\right)}{R_{1N} \left(1 + \frac{R_{1R}}{R_{1N}}\right)} = \frac{R_{2N} \left(1 + \frac{R_{2R}}{R_{2N}}\right)}{R_{1N} \left(1 + \frac{R_{1R}}{R_{1N}}\right)} = \frac{\left(1 + \frac{R_{2R}}{R_{2N}}\right)}{\left(1 + \frac{R_{1R}}{R_{1N}}\right)}$$

Recall: From Taylor's expansion truncated after first-order terms, for x small

$$\frac{1}{1+x} \simeq 1-x$$

Example: Determine the yield of the basic inverting amplifier if the gain must be accurate to 1% of its nominal value of A_{FB} =-1. Assume ideal op amp and resistors, as shown, have a Gaussian distribution with A_R =0.02 μ m and R_{\Box} = 1K Ω



Linearize the gain:

$$|A_{FB_ACT}| = \frac{\left(1 + \frac{R_{2R}}{R_{2N}}\right)}{\left(1 + \frac{R_{1R}}{R_{1N}}\right)} \simeq \left(1 + \frac{R_{2R}}{R_{2N}}\right) \left(1 - \frac{R_{1R}}{R_{1N}}\right) = 1 + \frac{R_{2R}}{R_{2N}} - \frac{R_{1R}}{R_{1N}} - \frac{R_{2R}}{R_{2N}} \frac{R_{1R}}{R_{1N}}$$

$$|A_{FB_ACT}| = 1 + \frac{R_{2R}}{R_{2N}} - \frac{R_{1R}}{R_{1N}}$$

Example: Determine the yield of the basic inverting amplifier if the gain must be accurate to 1% of its nominal value of A_{ER} =-1. Assume ideal op amp and resistors, as shown, have a Gaussian distribution with $A_R=0.02\mu m$ and $R_{\square}=1K\Omega$

$$|A_{FB_ACT}| = 1 + \frac{R_{2R}}{R_{2N}} - \frac{R_{1R}}{R_{1N}}$$

Gain is now a sum of two uncorrelated Gaussian Random variables so is gaussian and

$$\sigma_{A_{FB}}^2 = \sigma_{\frac{R_{2R}}{R_{2N}}}^2 + \sigma_{\frac{R_{1R}}{R_{1N}}}^2$$

But:
$$\sigma_{\frac{R}{R_N}} = \frac{A_R}{\sqrt{WL}} = \frac{A_R}{\sqrt{A}}$$

$$\sigma_{A_{FB}}^{2} = \frac{A_{R}}{\sqrt{A_{1}}} + \frac{A_{R}}{\sqrt{A_{2}}} = A_{R} \left(\frac{1}{\sqrt{A_{1}}} + \frac{1}{\sqrt{A_{2}}} \right)$$

Where A_1 and A_2 are the areas of R_1 and R_2

Since
$$A_1 = A_2 = 20\mu^2$$
 it follows that

Since
$$A_1 = A_2 = 20\mu^2$$
 it follows that $\sigma_{A_{FB}}^2 = A_R \left(\frac{2}{\sqrt{20}}\right) = 0.089$

Example: Determine the yield of the basic inverting amplifier if the gain must be accurate to 1% of its nominal value of A_{ER} =-1. Assume ideal op amp and resistors, as shown, have a Gaussian distribution with $A_R=0.02\mu m$ and $R_{\square}=1K\Omega$

$$V_{IN}$$
 $\stackrel{R_1}{\longrightarrow}$ V_{OUT}

$$V_{\text{IN}} = \frac{R_1}{R_{\text{PB}_ACT}} = 1 + \frac{R_{2R}}{R_{2N}} - \frac{R_{1R}}{R_{1N}}$$

$$\sigma_{A_{\text{FB}}}^2 = A_R \left(\frac{2}{\sqrt{20}}\right) = 0.0089$$

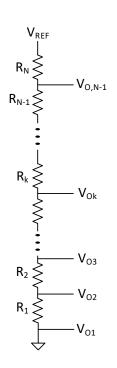
$$A_{\text{NOM}} = 1$$

$$Y = \int_{A_{FB}=0.99}^{1.01} f_{A_{FBR}} dA_{FB}$$

where f_{AFBR} is the pdf of the amplifier gain which is $N(1,\sigma_{AFB})$

Define
$$z = \frac{A_{RBR} - A_{NOM}}{\sigma_{A_{FBR}}}$$

$$Y = \int_{z=-0.106}^{0.106} f_{N(0,1)} dz$$


$$Y = 2F_{N(0.1)}(0.106)-1$$

$$F_{N(0,1)}(0.106) = .5636$$

Ratio Matching Effects in Data Converters

- Ratio matching is often critical in ADCs and DACs
- Accuracy and matching of gains is also critical in some data converters

String DAC Statistical Performance

Recall
$$INL_k = V_{OUT}(k) - V_{FIT}(k)$$

 $0 \le k \le N-1$

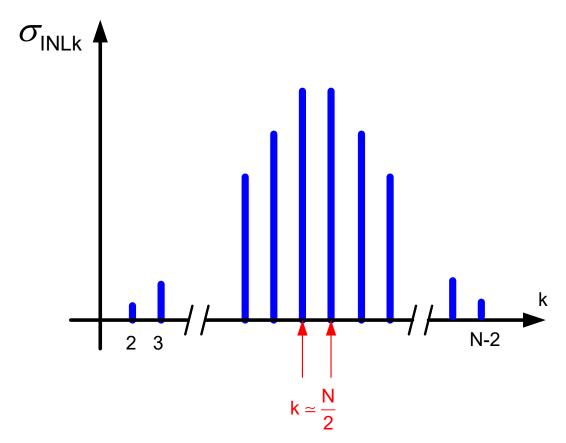
- INL is of considerable interest
- INL=Max($|INL_k|$), 0<k<N-1
- INL is difficult to characterize analytically so will focus on INL_k

Assume resistors are uncorrelated RVs but identically distributed, typically zero mean Gaussian

String DAC Statistical Performance

It can be shown that INL_k is zero-mean gaussian and

$$\sigma_{INL_{k}} = \sigma_{\frac{R_{R}}{R_{N}}} \sqrt{\frac{(N-k)(k-1)}{N-1}}$$

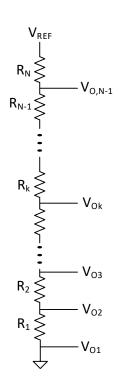

Note this is a nice closed-form expression for the standard deviation of INL_k for a string DAC !!

Observe this assumes a maximum value at about k=N/2

$$\sigma_{\text{INL}_k\text{MAX}} \simeq \sigma_{\frac{R_R}{R_N}} \sqrt{\frac{\left(N - \frac{N}{2}\right)\!\left(\frac{N}{2} - 1\right)}{N - 1}} \simeq \sigma_{\frac{R_R}{R_N}} \frac{\sqrt{N}}{2}$$

String DAC Statistical Performance

standard deviation of INL_k assumes a maximum variance at mid-code

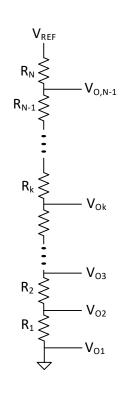


Recall INL_k is Gaussian and

$$\sigma_{INLk \max} = \sigma_{\frac{R_R}{R_{NOM}}} \frac{\sqrt{N}}{2}$$

String DAC Statistical Performance

Example 1:



Assume specification for 7-bit String DAC $|INL_{kMAX}|$ <1 LSB and Pelgrom matching parameter A_{ρ} = 0.1 μ m

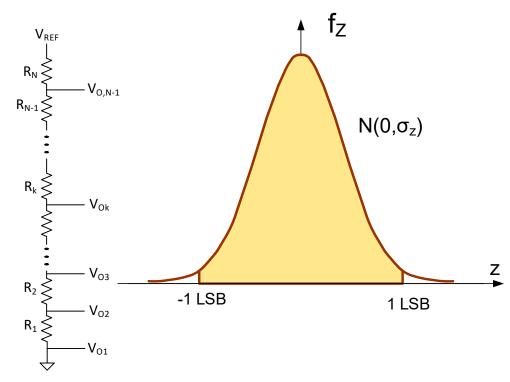
Desired Yield Y = 99%

Determine the resistor area A to achieve this yield

Determine the resistor area A to achieve this yield

Define
$$z = INL_{kMAX}$$

$$z: N(0 \sigma_z)$$


z:
$$N(0 \sigma_z)$$

$$\sigma_z \simeq \sigma_{\frac{R}{R_N}} \bullet \frac{\sqrt{N}}{2}$$

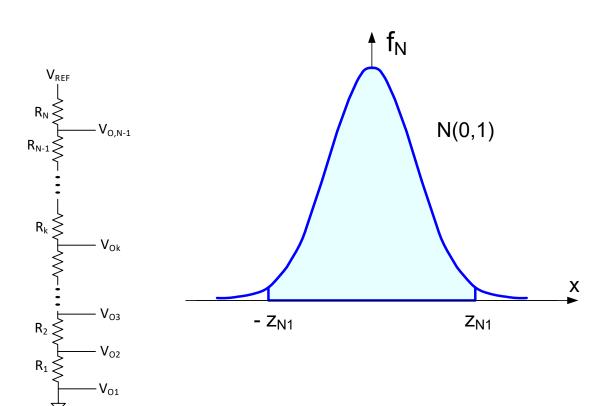
Assume f_z is the PDF of z

Solution strategy: Obtain σ_z , then solve above equation for and then solve $\sigma_{\frac{R}{R_N}}$ for A: $\sigma_{\frac{R}{R_N}} = \frac{A_R}{\sqrt{WL}} = \frac{A_R}{\sqrt{A}}$

Determine the resistor area A to achieve this yield

Want to determine A so that

$$0.99 = \int_{-1LSB}^{1LSB} f_z(z) dz$$


Define: $z_N = \frac{z}{\sigma_z} \qquad z_{N1} = \frac{1 LSB}{\sigma_z}$ $z_N \sim N(0,1)$

Notation: pdf of z_N is $f_N(z_N)$

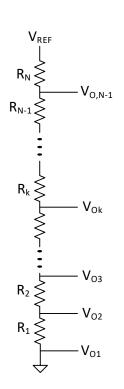
By change of variables, want

$$0.99 = \int_{-Z_{N1}}^{z_{N1}} f_N(z) dz$$

Determine the resistor area A to achieve this yield

$$0.99 = \int\limits_{-Z_{N1}}^{z_{N1}} f_N(z) dz$$

$$0.99 = 2F_N(z_{N1}) - 1$$


$$F_N(z_{N1}) = 0.995$$

$$F_N(z_{N1}) = 0.995$$
 $Z_{N1} = 2.575$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	$0.9^{2}0097$	$0.9^{2}0358$	0.9 ² 0613	$0.9^{2}0863$	0.9 ² 1106	0.9 ² 1344	0.9 ² 1576
2.4	0.9 ² 1802	$0.9^{2}2024$	$0.9^{2}2240$	$0.9^{2}2451$	$0.9^{2}2656$	$0.9^{2}2857$	$0.9^{2}3053$	$0.9^{2}3244$	0.022421	0.9 ² 3613
2.5	0.9^23790	$0.9^{2}3963$	$0.9^{2}4132$	$0.9^{2}4297$	$0.9^{2}4457$	$0.9^{2}4614$	0.9^24766	0.9 ² 4915	0.9^25060	0.9 ² 5201
2.6	$0.9^{2}5339$	$0.9^{2}5473$	0.9^25604	0.9 ² 5731	0.9^25855	0.9^25975	$0.9^{2}6093$	$0.9^{2}6207$	0.9 63 19	$0.9^{2}6427$
2.7	$0.9^{2}6533$	0.9 ² 6636	0.9 ² 6736	$0.9^{2}6833$	$0.9^{2}6928$	0.9 ² 7020	0.9 ² 7110	0.9 ² 7197	0.9 ² 7282	0.9 ² 7365
2.8	0.9 ² 7445	0.9 ² 7523	0.9^27599	0.9 ² 7673	0.9^27744	0.9 ² 7814	0.9 ² 7882	0.9 ² 7948	0.9 ² 8012	0.9 ² 8074
2.9	0.9 ² 8134	0.9 ² 8193	0.9 ² 8250	0.9 ² 8305	0.9 ² 8359	0.9 ² 8411	0.9 ² 8462	0.9 ² 8511	0.9 ² 8559	0.9 ² 8605
3.0	0.9^28650	0.9^28694	0.9 ² 8736	0.9 ² 8777	0.9 ² 8817	0.9 ² 8856	0.9 ² 8893	0.9 ² 8930	$0.9^{2}8965$	$0.9^{2}8999$

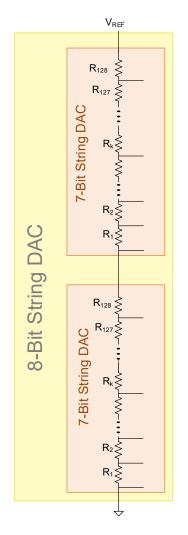
Determine the resistor area A to achieve this yield

$$Z_{N1}=2.575$$

$$Z_{N1}=\frac{1LSB}{\sigma_{Z}}$$

$$\sigma_{z}=0.388$$

but
$$\sigma_z = \sigma_{\frac{R}{R_N}} \bullet \frac{\sqrt{N}}{2} = \frac{A_{\rho}}{\sqrt{A}} \bullet \frac{\sqrt{N}}{2}$$


$$0.388 = \frac{A_{\rho}}{\sqrt{A}} \bullet \frac{\sqrt{N}}{2} \qquad \qquad \text{N = 127 and } A_{\rho} = 0.1 \ \mu\text{m}$$

Solving, obtain

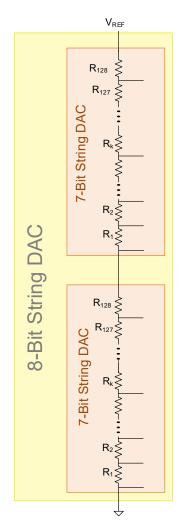
$$A = 2.13 \ \mu m^2$$
 $\sigma_{\frac{R}{R_N}} = 0.0685$

Example 2: Consider an 8-bit DAC obtained by combining 2 of the 7-bit DACs

Determine the yield if the specification is still |INL_{kMAX}| <1LSB

Define $z = INL_{kMAX}$

$$\sigma_z = \sigma_{\frac{R}{R_N}} \bullet \frac{\sqrt{N}}{2}$$

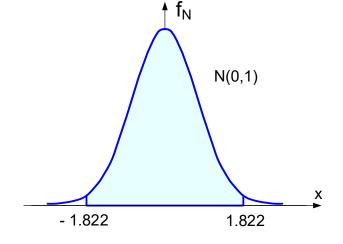

Since same resistors are used, $\sigma_{\frac{R}{R_N}} = 0.0685$

$$\sigma_z = 0.0685 \bullet \frac{\sqrt{256}}{2} = 0.5488$$

$$Y = \int_{-1LSB}^{1LSB} f_z(z) dz$$

Example 2: Consider an 8-bit DAC obtained by combining 2 of the 7-bit DACs

Determine the yield if the specification is still |INL_{kMAX}| <1LSB

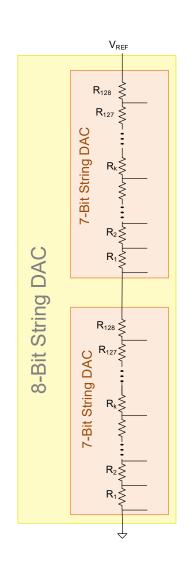


$$Y = \int_{-1LSB}^{1LSB} f_z(z) dz$$

Define
$$z_N = \frac{z}{\sigma_z}$$

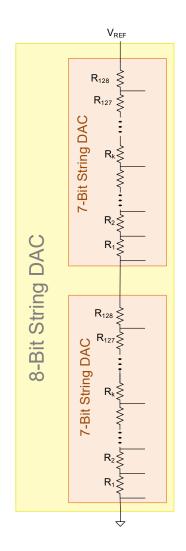
$$z_{N} = \frac{1LSB}{0.5488} = 1.822$$

$$Y = 2F_N(1.822) - 1$$



F(0.822) = 0.9656

lð Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	8.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	$0.9^{2}0097$	$0.9^{2}0358$	$0.9^{2}0613$	$0.9^{2}0863$	0.9 ² 1106	0.9 ² 1344	0.9 ² 1576
2.4	0.9^21802	$0.9^{2}2024$	$0.9^{2}2240$	0.9 ² 2451	$0.9^{2}2656$	0.9 ² 2857	$0.9^{2}3053$	$0.9^{2}3244$	0.9 ² 3431	0.9 ² 3613
2.5	0.9^23790	0.9^23963	0.9 ² 4132	$0.9^{2}4297$	$0.9^{2}4457$	$0.9^{2}4614$	0.9^24766	0.9 ² 4915	0.9^25060	0.925201
2.6	$0.9^{2}5339$	0.9^25473	0.9^25604	0.9 ² 5731	0.9^25855	0.9^25975	$0.9^{2}6093$	$0.9^{2}6207$	0.9 ² 6319	$0.9^{2}6427$
2.7	$0.9^{2}6533$	0.9 2 6636	$0.9^{2}6736$	$0.9^{2}6833$	$0.9^{2}6928$	$0.9^{2}7020$	0.9 ² 7110	0.9 ² 7197	$0.9^{2}7282$	0.9 ² 7365
2.8	$0.9^{2}7445$	$0.9^{2}7523$	0.9^27599	0.927673	0.9^27744	0.9 ² 7814	0.9^27882	0.9 ² 7948	0.9 ² 8012	0.9^28074
2.9	0.9^28134	0.928193	$0.9^{2}8250$	0.9^28305	$0.9^{2}8359$	0.9 ² 8411	0.9^28462	0.9 ² 8511	$0.9^{2}8559$	$0.9^{2}8605$
3.0	0.9 ² 8650	0.9 ² 8694	0.9 ² 8736	0.9 ² 8777	0.9 ² 8817	0.9 ² 8856	0.9 ² 8893	0.9 ² 8930	0.9 ² 8965	0.9 ² 8999


Example 2:

Consider an 8-bit DAC obtained by combining 2 of the 7-bit DACs

$$Y = 2F_N (1.822) - 1$$

 $Y = 2 \cdot 0.965 - 1 = 0.93$

Yield has dropped from 99% to 93%

Example 3: What area is needed for obtaining a 99% yield for an 8-bit string DAC and how does that compare to the area required for a 7-bit DAC with the same yield?

For 99% yield
$$\sigma_z = \sigma_{\frac{R}{R_N}} \bullet \frac{\sqrt{N}}{2} = \frac{A_\rho}{\sqrt{A}} \bullet \frac{\sqrt{N}}{2} = 0.388$$

$$\frac{A_\rho}{\sqrt{N}} \bullet \frac{\sqrt{N}}{\sqrt{N}} = 0.388$$

$$\begin{aligned} &A_{\rho}=0.1\mu m & N=256 \\ &A=4.25\,\mu m^2 \end{aligned}$$

Area doubled because there are twice as many resistors and each is approximately twice as big so by adding 1-bit of resolution, the area went up by approximately a factor of 4

String DAC Statistical Performance

How about statistics for the INL?

$$INL = \max_{1 \le k \le N} |INL_k|$$

$$INL_{k} = \frac{1}{R_{NOM}} \left[\sum_{j=1}^{k} R_{Rj} \left(1 - \frac{k}{N-1} \right) - \frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{Rj} \right] \qquad 1 \le k \le N-1$$

- INL is an <u>order statistic</u>
- Distribution functions for order statistics are very complicated and closed form solutions do not exist!
- INL is not zero-mean and not Gaussian
- Statistical simulations using Monte-Carlo analysis often used to predict INL yield but these simulations can be extremely time consuming if the order of the data converter is very large

How important is statistical analysis?

- Statistical analysis of data converters is critical
- Some architectures are more sensitive than others to statistical variations in components
- The onset of yield loss due to statistical limitations is generally quite abrupt and can have disastrous effects if not considered as part of the design process

Recall examples where σ_{VOS} =5mV compared with σ_{VOS} =1mV

 Substantially over-designing to avoid concerns about statistical yield loss is not a practical solution since the area penalty, the speed penalty, and the power penalty are generally quite severe

For the effects of local random variations of a parameter X, generally

$$\sigma_{X} \propto \frac{A_0}{\sqrt{A_C}}$$

where A_C is the area of the matching critical components and A₀ is a process parameter

Stay Safe and Stay Healthy!

End of Lecture 39